Pathogenicity prediction of non-synonymous single nucleotide variants in dilated cardiomyopathy

نویسندگان

  • Sabine C. Mueller
  • Christina Backes
  • Jan Haas
  • Hugo A. Katus
  • Benjamin Meder
  • Eckart Meese
  • Andreas Keller
چکیده

Non-synonymous single nucleotide variants (nsSNVs) in coding DNA regions can result in phenotypic differences between individuals; however, only some nsSNVs are causative for a certain disease. As just a fraction of respective nsSNVs is annotated in databases, computational biology tools are applied to predict the pathogenicity in silico. In addition to applications in oncology, novel molecular diagnostic tests have been developed for cardiovascular disorders as a leading cause of morbidity and mortality in industrialized nations. We explored the concordance and performance of 13 nsSNV pathogenicity prediction tools on panel sequencing results of dilated cardiomyopathy. The analyzed data set from the INHERITANCE study contained 842 nsSNVs discovered in 639 patients, screened for the full sequence of 76 genes related to cardiomyopathies. The single tools prediction revealed a surprisingly high heterogeneity and discordance based on the implemented prediction method. Known disease associations were not reported by the tools, limiting usability in clinics. Because different tools have different advantages, we combined their results. By clustering of correlated methods using similar prediction strategies and calculating a majority vote-based consensus, we found that the prediction accuracy and sensitivity can be further improved. Although challenges remain, different in silico tools bear the potential to predict the malignancy of nsSNVs, especially if different algorithms are combined. Most tools rely mainly on sequence features; beyond these, structural information is important to analyze the relationship of nsSNVs with disease phenotypes. Likewise, current tools consider single nsSNVs, which may, however, show a cumulative effect and turn neutral mutations in an ensemble into pathogenic variants.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In-silico study to identify the pathogenic single nucleotide polymorphisms in the coding region of CDKN2A gene

Background: CDKN2A, encoding two important tumor suppressor proteins p16 and p14, is a tumor suppressor gene. Mutations in this gene and subsequently the defect in p16 and p14 proteins lead to the downregulation of RB1/p53 and cancer malignancy. To identify the structural and functional effects of mutations, various powerful bioinformatics tools are available. The aim of this study is the ident...

متن کامل

Private Mitochondrial DNA Variants in Danish Patients with Hypertrophic Cardiomyopathy

Hypertrophic cardiomyopathy (HCM) is a genetic cardiac disease primarily caused by mutations in genes coding for sarcomeric proteins. A molecular-genetic etiology can be established in ~60% of cases. Evolutionarily conserved mitochondrial DNA (mtDNA) haplogroups are susceptibility factors for HCM. Several polymorphic mtDNA variants are associated with a variety of late-onset degenerative diseas...

متن کامل

Cardiac structural and sarcomere genes associated with cardiomyopathy exhibit marked intolerance of genetic variation.

BACKGROUND The clinical significance of variants in genes associated with inherited cardiomyopathies can be difficult to determine because of uncertainty regarding population genetic variation and a surprising amount of tolerance of the genome even to loss-of-function variants. We hypothesized that genes associated with cardiomyopathy might be particularly resistant to the accumulation of genet...

متن کامل

Prioritization of Deleterious Variations in the Human Hypoxanthine-Guanine Phosphoribosyltransferase Gene

ABSTRACT             Background and Objectives: Non-synonymous single nucleotide polymorphisms are typical genetic variations that may potentially affect the structure or function of expressed proteins, and therefore could be involved in complex disorders. A computational-based analysis has been done to evaluate the phenotypic effect of no...

متن کامل

A Bioinformatics Approach to Prioritize Single Nucleotide Polymorphisms in TLRs Signaling Pathway Genes

It has been suggested that single nucleotide polymorphisms (SNPs) in genes involved in Toll-like receptors (TLRs) pathway may exhibit broad effects on function of this network and might contribute to a range of human diseases. However, the extent to which these variations affect TLR signaling is not well understood. In this study, we adopted a bioinformatics approach to predict the consequences...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Briefings in bioinformatics

دوره 16 5  شماره 

صفحات  -

تاریخ انتشار 2015